
GROUP THEORY 2024 - 25, SOLUTION SHEET 7

Exercise 1. Review the lecture and understand/fill in the gaps in the proofs.

Exercise 2. By the correspondence theorem, normal subgroups of G that contain H are in
bijection with normal subgroups of G/H. This proves both implications of the claim.

Exercise 3. A composition series is given by

0 = 12Z/12Z ⊴ 6Z/12Z ⊴ 3Z/12Z ⊴ Z/12Z

with composition factors

{Z/2Z,Z/2Z,Z/3Z}.
The composition series is not unique, for example here is another one

0 = 12Z/12Z ⊴ 6Z/12Z ⊴ 2Z/12Z ⊴ Z/12Z

They have the same composition factors by a theorem of the lectures.

Exercise 4. Let V4 = {1, (12)(34), (13)(24), (14)(23)} be the Klein four-group. Notice that it
is precisely the subgroup of A4 elements of order 2. Since for all σ ∈ A4 and x ∈ V4 we have
(σxσ−1)2 = 1, this prove that σxσ−1 has order 2 and hence belong to V4. This shows that V4

is normal in A4. It follows that

0 ⊴ Z/2Z = ⟨(12)(34)⟩ ⊴ V4 ⊴ A4

is a composition series. Its composition factors are

{Z/2Z,Z/2Z,Z/3Z}

since those are the only groups with the required cardinalities. Since A4 ⊴ S4 is normal, we
can extend it to a composition series

0 ⊴ Z/2Z = ⟨(12)(34)⟩ ⊴ V4 ⊴ A4 ⊴ S4

with composition factors

{Z/2Z,Z/2Z,Z/3Z,Z/2Z}.

Exercise 5. By the properties of semi-direct products, we have an exact sequence:

1 → G → G⋊φ H → H → 1.

Then it follows from Proposition 22 of the notes that the composition factors of G ⋊φ H are
just the compositions factors of G and the composition factors of H.

1



2 GROUP THEORY 2024 - 25, SOLUTION SHEET 7

Exercise 6. (1) By exercise 5 of last week, we know that we can write

Z/nZ ∼= Z/pa11 Z× Z/pa22 Z× . . .× Z/pakk Z.
Hence a composition series is given by the following:

0 ⊴ Z/p1Z ⊴ Z/p21Z ⊴ Z/p31Z ⊴ . . . ⊴ Z/pa11 Z ⊴ Z/pa11 Z× Z/p2Z ⊴

Z/pa11 Z× Z/p22Z ⊴ . . . ⊴ Z/pa11 Z× Z/pa22 Z× . . .× Z/pakk Z

which has length a1 + a2 + . . .+ ak. The composition factors consist of ai-times Z/piZ
for all 1 ≤ i ≤ k.

(2) Let n ∈ N. Using proposition 19 of the lectures, we know that G = Z/nZ has a
composition series

0 = G0 ⊴ G1 ⊴ . . . ⊴ Gk = G.

Since G is abelian, so are his subgroups. Hence the composition factors Gi+1/Gi are
finite simple abelian groups, i.e. they are cyclic of prime order (as explained in the
lectures). It follows that

n = |G| ∼= |G/Gk−1| × |Gk−1| ∼= |G/Gk−1| × |Gk−1/Gk−2| × |Gk−2|

∼=
k−1∏
i=0

|Gi+1/Gi|

which is a product of primes. By the Jordan Hölder theorem, the composition factors
Gi+1/Gi are unique (up to permuting the factors), which shows that such a decompo-
sition of n as a product of primes is unique.

Exercise 7. By exercise 7 of sheet 4 we have an isomorphism D2n
∼= Z/nZ ×φ Z/2Z. Hence

we have a short exact sequence

0 → Z/nZ → D2n → Z/2Z → 0

and so by the lectures we know that D2n has a composition series given by attaching a compo-
sition series of Z/nZ with one of Z/2Z. The previous exercise gives us such composition series.
Moreover, exercise 5 tells us that the composition factors is the union of the factors of those
two groups.

Exercise 8. Suppose by contradiction that we have the existence of a proper normal subgroup
H ⊴ G. Then if we let G0 := 1, there exists n ∈ N such that Gn ⊆ H and Gn+1 ⊈ H.
However, we then have that Gn+1

⋂
H is a proper normal subgroup of Gn+1, which contradicts

the assumption. Consider the inclusions A5 ⊂ A6 ⊂ . . . of the alternating groups, all of which
are simple. Then

Ā =

∞⋃
i=5

Ai

is infinite and simple.

Exercise 9. (1) See the proof of propositions 20, 21, 22 and the Jordan-Holder theorem.
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(2) We have a short exact sequence

1 → K → G → G/K → 1

By the previous point, length(G) = length(K) + length(G/K), but as K is a proper
subgroup of G, we have that G/K is not trivial and thus of length strictly greater than
0. This implies that length(G) > length(K).

(3) If we have a strict chain

1 ⊴ G0 ⊴ G1 ⊴ G2 ⊴ . . .

made up of normal subgroups of G, we can apply (2) to get

0 < length(G0) < length(G1) < . . .

Thus, any such chain must be finite and have length at most equal to length(G) + 1.
(4) Let us prove each of the two implications:

” =⇒ ” Observe that the reasoning of (3) still holds, even if the chains described in
(a) and (b) are not made up of normal subgroups of G.

” ⇐= ” Clearly, G is normal in G. If G is simple, we are already done. If not, pick a
normal subgroup H0 ⊴ G. If H0 is maximal in G, we stop. If not, we continue iterating
this process by choosing at each time a normal subgroup Hi of G such that Hi−1 ⊴ Hi

with strict inclusion. By assumption (b), this process must terminate at some Hn for n
a positive integer. Set G1 = Hn ⊴ G. One can check that G1 is maximal in G, if not
the above process would have not terminated. Observe that G1 is also normal in G, by
construction, Thus, we can inductively apply the same reasoning as above to obtain a
descending normal chain in which each inclusion is maximal:

G ⊵ G1 ⊵ G2 ⊵ . . .

By assumption (a) such a chain must stabilize at some Gn and by construction of the
Gi we must have that Gn = 1. We have thus obtained a composition series for G, so G
has finite length.


